NEW SYSTEMS OF LECTRIC-HYDRAULIC BATTERY MOBILE DRIVE

Josef Nevrlý, prof. RNDr. Ing. CSc.

Institute of Machine and Industrial Design Faculty of Mechanical Engineering Brno University of Technology

Brno, 16 March 2022

INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN **Limitations of this presentation**

LIMITATIONS OF THIS PRESENTATION

only a bird's eye view

merely inbird'scomplete mosaic,

rough sketch of more extensive solutions

SIMILARITY BETWEEN TWOO PROCEDURES

THREE STAGES OF BUILDING OUR FICTIOUS ROCKET

3. DAPPER 5000

2. E19

1. AMMANN AP 240H

NEW SYSTEMS OF LECTRIC-HYDRAULIC BATTERY MOBILE DRIVE

Atlas V

3/42 INSTITUTE OF MAC AND INDUSTRIAL D

STAGES OF DEVELOPMENT OF NEW HYDRAULIC SYSTEMS

THREE STAGES OF DEVELOPMENT OF NEW HYDRAULIC SYSTEMS:

- 1. The Amann road tire roller E19 produced by the company Amann, Nocé Město nad Metují
- 2. The excavator E19manufactured by the company Bobcat Doosan, CZ
- 3. The Dapper 5000 wheel loader produced by VOP, s. p., CZ

The twoo solvers: Brno University of Technology + Bosch Rextoth

1. THE AMANN ROAD TIRE ROLLER AP 240 H

The aim of the research:

to reduce engine fuel consumption without any engine modification (!)

The road roller **AMMANN AP 240 H** mass: 24 tons

THE ENERGY RECOVERY SYSTEM

ELEMETS OF THE ENERGY RECOVERY SYSTEM

- the variable-displacement pump/motor
- the electric motors
- the accumulators
- the oil reservoir
- the connecting lines
- the flywheel which is used to simulate vehicle inertia

THE DIAGRAM OF THE STAND HYDRAULIC CIRCUIT

THE SPECIAL EXPERIMENTAL STAND

Hydraulic energy recovery system of the stand consists of:

- electric motor
- high-pressure accumulator
- low-pressure accumulator
- valve block
- variable-displacement pump/motor
- oil reservoir
- fly-wheel simulating vehicle inertia
- connecting lines

THE PRINCIPAL MODEL SCHEME OF THE STAND IN MATLAB/SIMULINK

THE SIMULATED COURSES OF THE MAIN QUANTITIES OF THE CYCLIC RECOVERY

THE VALVE BLOCK OF THE ROAD ROLLER AMMANN

(M. RANUSA)

NEW SYSTEMS OF LECTRIC-HYDRAULIC BATTERY MOBILE DRIVE

11/42

HYDROMOBILE EQUIPPED BY ENERGY RECOVERY, BRNO INTERNATIONAL TRADE FAIR

NEW SYSTEMS OF LECTRIC-HYDRAULIC BATTERY MOBILE DRIVE

12/42

DISTINCTION BY THE RECTOR OF THE BUT

MICHAL STODOLÁK AND MARTIN MIKULA

students of the Institute of Machine and Industrial Design

HYDROSTATIC RECOVERY MODULE

(M. RANUSA)

14/42

THE ROAD ROLLER AMMANN AP 240H

Maximal weight	24 000 kg
Maximal speed	19 km/h
Performance	74 kW

NEW SYSTEMS OF LECTRIC-HYDRAULIC BATTERY MOBILE DRIVE

15/42

REACHED GOALS IN OUR PROJECT

Fuel savings: till 26.6 %

Kinetic energy absorption:

96 % of kinetic energy into the recovery system 37 % into the hydraulic accumulator Lowering of CO2 and NOx emissions Prologation of braking system lifetime Possibility of the machine acceleration improving

2. THE EXCAVATOR E19

E19 parameters

- Engine: Diesel engine Kubota / D722-E2B-BCZ-7
- Max NET power (ISO 9249): 9,9 kW
- Max NET torque (ISO 9249): 42.3 Nm
- Travel speed range:

low/	2.5 km/h,
high	4.0 km/h

NEW SYSTEM WITH ELECTRIC MOTOR AND AXIAL PISTON PUMP

THE ELECTRIC MOTOR

Electric motor

CurrentDCNumber of phase3Maximum power10 kWMaximum torqur80 Nm

THE MODEL OF THE BATTERY

THE MODEL OF ELECTRIC DRIVE OF EXCAVATOR

MODELING AND SIMULATION OF ELECTRIC SUBSYSTEMS

Model of voltage differential equations of the synchronous motor

22/42

SIMULATION RESULTS

VARIABLE PUMP REXROTH

- Open hydraulic loop
- Pump: axial piston variable pump Rexroth A1VO 18
- Flow rate at 3300 rpm: 59 I /min
- Max. pressure
- 35 Mpa Weight 13.5 kg
- Rexroth closed centre control valves •

- modelling and simulation of hydraulic, electric and mechanical systems of drive have enabled to achieve a quality solution hardly attainable by the use of other methods
- simulation results confirmed supposed benefit of the electric drive in comparison with diesel engine which was replaced by electric motor
- no gas exhalations
- quiet and economical operation: 93 dB by Diesel, but only ~62 dB by electric drive
- possibility of operation in the environment where no exhalations and noise are allowed, e.g. hospital premises, indoor or protected areas, etc.
- the new descibed drive and control system of the excavator has beem patented

BRNO INTERNATIONAL TRADE FAIR 2018 GOLD MEAL

NEW SYSTEMS OF LECTRIC-HYDRAULIC BATTERY MOBILE DRIVE

27/42

3. THE DAPPER 5000 WHEEL LOADER

FEATURES DAPPER 5000	2 821 mm
Width	1.270 mm
Height	2.301 mm
Weight	1.640 kg
Max. lift weight	950 kg *
Max. speed	16 km/h
Engine	Kubota V 15052
Power	2.5 kW, 2.600 rpm

PROJECT SOLUTION PARTICIPANTS

Bosch Rexoth

Ing. M. Fichtla, Ing. M. Obert

Brno University of Technology Faculty of Mechnical Engineering

prof. J. Nevrlý, doc. D. Koutný Instittue of Machine Design

doc. Z. Němec Institute of Automation and Computer Science

Faculty of Electrical Engineering and Communication

doc. P. Procházka, doc. P. Vorel Institute of Power Electrical Engineering and Electronics

THE MODEL OF THE ELECTRIC MOTOR

NEW SYSTEMS OF LECTRIC-HYDRAULIC BATTERY MOBILE DRIVE

30/42 INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN

EXAMPLE OR TIME COURSES OF SIMULATED QUANTITIES

ELECTRIC MOTOR CONTROL, PART WITH SPEED AND TORQUE CONTROL

NEW SYSTEMS OF LECTRIC-HYDRAULIC BATTERY MOBILE DRIVE

32/42 INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN

A SAMPLE FROM MODEL VERIFICATION TESTS

NEW SYSTEMS OF LECTRIC-HYDRAULIC BATTERY MOBILE DRIVE

33/42 INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN

- In all three described cases of earth machines, it became necessary to use mathematical modeling. and simulation.

- Without the use of mathematical modeling in the developed machines

a) the fuel consumption of the Ammann road roller would not have decreased by as much as 26.6%

b) the described electrification of the E19 excavator would not have been awarded a Gold medal in 2018 in the International Engineering Fair in Brno

c) with the Dapper 5000 loader it would not be possible to predict the static and dynamic behavior after replacing the internal combustion engine with an electric motor and to set the optimal parameters of its control

PROJECTS (TAČR, MPO, MŠMT), PATEMTS - UTILITY MODEL

- ELECTRIC LOADER RESEARCH AND DEVELOPMENT

TAČR, OEWL PROJECT FW01010156, 2020 -2022

- RESEARCH AND DEVELOPMENT OF ELECTRIC DRIVE MINI-EXCAVATOR UP TO 2 TONS

MPO, 2016 -2018

- RECOVERY HYDROSTATIC MODULE FOR COMMERCIAL VEHICLES

MŠMT, LF1 2029, 2013 -2015

UITIILITY MODEL DRIVE SYSTEM OF EMISSION-FREE WHEELED EARTH-MOVING MA

NEVRLY JOSEF, NEMEC ZDENEK, PROCHAZKA PETR, PAZDERA IVO. REGISTERED BY THE TECHNOLOGY TRANSFER DEPARTMENT BUT UNDER NUMBER 2022 49, dated: 25. 2. 2022

DIPLOMA THESES 1

- Indruch Jiří: Stand for the analysis of energy recovery in an experimental vehicle (Stend pro analýzu rekuperace energie v experimentálním vozidle)

- Kobza Michal:

Determination of efficiency of recuperative hydrostatic drive (Stanovení účinnosti rekuperačního hydrostatického pohonu)

 Mikula, M.: Hydromobile - design of hydraulic part and transmission (Hydromobil – návrh hydraulické části a převodu)

 Nožka M.: Control of hydraulic valve blocks of the mini-excavator (Řízení hydraulických rozváděčů miniexkavátoru)

DIPLOMA THESES 2

- Ranuša Matúš: Design of a valve block of a recuperative hydrostatic module of a vehicle (Návrh ventilového bloku rekuperačního hydrostatického modulu vozidla)

- Stodolák, M.: Hydromobile - design of mechanical-hydraulic recuperation of car kinetic energy (Hydromobil – návrh mechanicko-hydraulické rekuperace kinetické energie automobilu

OTHER ACTIVITIES IN CONNECTION WITH THE DAPPER 5000 PROJECT

- patent searches
- reviews of partial research reports
- modeling support
- searches for partial problems and presentation of these searches
- supervision of students' qualification works

SERCHES AND PRESENTATIONS

- Operating performance of pure electric loaders with different types of motors based on simulation analysis
- Dynamic modeling of a backhoe-loader
- The electrification of loader designs
- Fork lithium batteries
- Current production programs of electrified loader manufacturers
- Battery nodeling

NEVRLÝ, Josef, NĚMEC, Zdeněk, PAZDERA, Ivo and NOŽKA, Michal. Modelling of electric drive for excavator pump. In: 24th International Conference ENGINEERING MECHANICS 2018, Svratka, Czech Republic, 14 – 17 May 2018. ISBN 978-80-214-5497-2, ISSN 1805-8248.

NEVRLY, Josef, NEMEC, Zdenek, VOREL, Pavel, PROCHAZKA, Petr, FICHTA, Martin and JURIK, Miroslav. Battery electric drive of excavator designed with support of computer modeling and simulation. Submission to <u>The First World Energies Forum</u> (https://sciforum.net/conference/WEF), 14/09/2020 - 05/10/2020, published on conference website: https://sciforum.net/paper/view/6927

NEVRLY, Josef, FICHTA, Martin, JURIK,, Miroslav, NEMEC Zdenek, KOUTNY, Daniel, VOREL, Pavel and PROCHAZKA, Petr. Battery electric drive of excavator designed with support of computer modeling and simulation. *Paper in: electronic proceedings of the conference <u>The First World Energies</u> <u>Forum</u>, session <u>Ener</u>, 14/09/2020 - 05/10/2020, MDPI, Basel, Switzerland. Dostupnost - abstrakt<u>gy Conversion Systems</u>: https://www.mdpi.com/2504-3900/58/1/25 , verze v pdf: <u>https://www.mdpi.com/2504-3900/58/1/25/pdf</u>*

NEVRLY, Josef, FICHTA, Martin, JURIK, Miroslav, NEMEC, Zdenek, PROCHAZKA, Petr, KOUTNY, Daniel and PETROVIC, Radovan. New systems of energy recovery and electric-hydraulic battery mobile drive. In: *Proceedings of the 25th International conference on hydraulics and pneumatics. June 8-9, 2022 (accepted for publication), Prague, Czech Republic.* Czech Mechanical Engineering Society, section Czech Association for Hydraulics and Pneumatics, *2022.*

THANK YOU FOR YOUR ATTENTION

Josef Nevrly, prof. RNDr. Ing. CSc.

nevrly@fme.vutbr.ćz

www.**ustavkonstruovani**.cz